Lessons Learned from Marsh Creation Vegetation Monitoring –

Assessing the need for Plantings and Regional Variation in Vegetation Establishment

Leigh Anne Sharp, Bernard Wood and Danielle Richardi CPRA Operations

committed to our coast

Acknowledgements

- **USGS** Sarai Piazza, Brady Couvillion, Gregg Snedden, Michelle Fischer, Greg Steyer, Craig Conzelmann
- CPRA Lafayette, New Orleans, and Thibodaux Regional Offices, Ed Haywood, Rick Raynie
- CWPPRA Coastal Wetland Planning Protection and Restoration Act Federal Partners

Q: Do we need to plant marsh creation projects? A: No, not really.

But the inclination to do so is understandable.

Q: Do we need to plant marsh creation projects? A: No, not really.

If a borrow source has previously been shown to self-vegetate, there is no need to plant unless you want to influence the resulting vegetation community.

Plantings on a nearby cycle will influence future cells.

Self-vegetating borrow sources:

- Calcasieu Ship Channel
- Mississippi River
- Lake Pontchartrain
- Lake Boudreaux
- Bayous Perot and Rigolettes

Q: What does vegetation succession look like in created marsh? A: Succulents then grasses and shrubs.

Q: Are the species that emerge the same across the coast? A: No. MR sediments yield higher diversity and support fresh to intermediate vegetation.

Mississippi River sediments show higher diversity in four years than Calcasieu Ship Channel

sediments do in 15 years.

Species (Habitat, CC Score)

Others

Eleocharis cellulosa (F/I, 7) Solidago sempervirens (F/I, 4) Lythrum lineare (I/B, 5) Leptochloa fusca (I, 2) Baccharis halimifolia (F/I, 4) Spartina patens (I/B, 9) Typha domingensis (I, 3) Eleocharis parvula (I/B, 3) Distichlis spicata (F/I, 2) Typha latifolia (F, 2) Bacopa monnieri (F/I, 5) Paspalum vaginatum (I, 7) → FQI

Planted Spartina alterniflora can change the community in adjacent pre-existing marsh

- Other
- Symphyotrichum tenuifolium
- Lythrum lineare
- 📕 lpomoea sagittata
- Schoenoplectus pungens
- Vigna luteola
- Schoenoplectus americanus
- Schoenoplectus robustus
- Distichlis spicata
- Spartina patens
- Spartina alterniflora

Wild, flood tolerant Spartina alterniflora colonized submerged mudflats in the CS-28 project area during the 2011 drought.

E Sabine MC (CS-28), December 2010

May 2013

Wild, flood tolerant Spartina alterniflora colonized submerged mudflats in the CS-28 project area during the 2011 drought.

CPRA funded a study at BA-36 that assessed a whole suite of factors than we don't typically monitor.

Find it in CIMS and come see Irv right here at 4:00.

There are CRMS and CRMS-like sites in some marsh creation project areas. Those data along with all CPRA monitoring data and reports are publically available online.

- CRMS6301 E Sabine MC, Cycle 1 (CS-28)
- CRMS6302 Black Lake MC (CIAP)
- CRMS3567 Bayou Bonfouca MC (PO-104)
- TV21-CR01 and CR02 E Marsh Island MC (TV-21)
- BA39-01, 02, and 03 MR Sediment Delivery System Bayou Dupont (BA-39)

CONNECT WITH US!

www.coastal.la.gov